Physical properties and giant magnetoimpedance sensitivity of rapidly solidified magnetic microwires

نویسندگان

  • Basile Dufay
  • Sébastien Saez
  • Christophe Dolabdjian
  • Arthur Yelon
  • David Ménard
  • B. Dufay
  • S. Saez
  • C. Dolabdjian
  • A. Yelon
  • D. Ménard
چکیده

The relation between the magnetoimpedance and the magnetic properties of a wide set of soft magnetic microwires from several sources has been studied. Magnetic properties were obtained by vibrating sample magnetometry and ferromagnetic resonance spectroscopy. The magnetoimpedance voltage sensitivity of each sample, the criterion of interest for high sensitivity magnetometer design, was then evaluated at several frequencies and drive currents. It appears that all samples possess roughly similar properties, regardless of their fabrication process or chemical composition. The voltage sensitivity of the samples obtained from experimental measurement is compared with a simple model of sensitivity. The general trends predicted by the model provide useful insights for materials optimization. Averaged sensitivity over the sample set is around 10 kV/T/cm at 10 MHz. The critical importance for sensitive magnetometry of the maximum excitation current permissible in each wire is also highlighted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Joule-Heating Annealing on Giant Magnetoimpedance of Co64Fe4Ni2B19-xSi8Cr3Alx (x = 0, 1 and 2) Melt-Spun Ribbons

In this work, we have studied the influence of dc joule-heating thermal processing on the structure, magnetoimpedance (MI) and thermal properties of Co64Fe4Ni2B19-xSi8Cr3Alx (x = 0, 1, and 2) rapidly solidified melt-spun ribbons. The nanocrystallization process was carried out by the current annealing of as-spun samples at various current densities. As-spun and joule-heated samples were studied...

متن کامل

Gamma Irradiation Effect on Asymmetric Giant Magnetoimpedance of Co68.15Fe4.35Si12.5B15 Amorphous Alloy

The giant magneto impedance (GMI) effect is a large variation in the electrical impedance of a magnetic conductor when subjected to a static magnetic field. The sensitivity to the direction (AGMI) and magnitude of applied  magnetic field    and also linearity levels   of this  effect are three important parameters in magnetic sensors application. A suitable annealing procedure can be used to ac...

متن کامل

Rapidly Solidified Magnetic Nanowires and Submicron Wires

Magnetically soft amorphous glass-coated microwires are suitable for numerous sensor applications. Their typical dimensions – metallic nucleus diameter of 1 to 50 m and glass coating thickness of 1 to 30 m – make them promising candidates for high frequency applications, especially given their sensitive giant magneto-impedance (GMI) response in the MHz and GHz ranges (Torrejón et al, 2009). T...

متن کامل

Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, i...

متن کامل

TEM INVESTIGATION OF RAPIDLY SOLIDIFIED NDFEB HARD MAGNETIC MATERIAL

The surface condition and microstructure of near stoichiometric (Fe823Ndll.8B5.9) Nd-Fe-B alloy ribbons and the effect of melt spinning parameters were investigated using optical, scanning and transmission electron microscopes (SEM, TEM). The formation of gas pockets on the roll surface of the ribbons during melt spinning can prevent heat transform and result in local coarse grains. The local t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017